Abstract

A protocol of enzymatic water extraction was developed to isolate antiradical and DNA damage inhibitory polysaccharides from Epimedium brevicornu (EbP) using single factor experiments and orthogonal test for the first time. Compared to conventinal heating extraction, enzymatic water extraction dramatically enhanced extraction yield, shortened extraction duration, reduced extractant consumption and decreased extraction temperature. Structural features of EbP were investigated by infrared spectroscopy. And some other physicochemical properties like solubility of EbP were identified. EbP obtained by enzymatic water extraction exhibited ability to scavenge DPPH• and ABTS+• radicals. Consistent with their free radical-scavenging activities, Epimedium polysaccharides possessed protective effect against plasmid DNA damage induced by oxidative stress. In summary, enzymatic water extraction seems to be a promising technique for separating Epimedium polysaccharides, which might act as a natural antioxidant or a chemopreventive agent due to their free radical-scavenging capacity and protective activity against DNA damage caused by oxidative stress. Practical Applications Polysaccharides are considered one of the most important bioactive constituents in the famous edible medicinal plant, Epimedium brevicornu. In the present study, enzymatic water extraction of polysaccharides from Epimedium brevicornu was optimized for further large-scale industrial processing for the first time. Epimedium polysaccharides obtained by enzymatic water extraction have proved to possess antioxidant and DNA damage inhibitory activities, which show great potential for becoming a nutraceutical in healthy foods or even a phytopharmaceutical.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.