Abstract

Numerous enzymes have the potential to upgrade biomass, converting it into high-tech materials for new applications. However, the features of natural enzymes often limit their use beyond chemical conversion of the substrate. The development of strategies for the enzymatic conversion of biomass into high-value materials may broaden the range of applications of enzymes and enzyme design techniques. A relevant case is lytic polysaccharide monooxygenase (LPMO), a class of enzymes that catalyzes the oxidative cleavage of glycosidic bonds. Here, we show that an ancestral LPMO can generate chitin nanocrystals. Physicochemical characterization of the chitin nanocrystals demonstrates modifications that make it superior compared to chitin obtained by chemical treatments. We show that the nanocrystals are suitable for controlled 2D and 3D cell cultures, as well as for engineering a biomatrix that combines with graphene oxide, forming a hybrid conductive bioink.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call