Abstract

The metabolism of the mercapturic acids S-pentachlorobutadienyl- N-acetylcysteine (N-Ac-PCBC), S-trichlorovinyl- N-acetylcysteine(N-Ac-TCVC)andS-dichlorovinyl- N-acetylcysteine (N-Ac-DCVC) by subcellular fractions from male rat liver and kidney homogenates was studied. As a model compound, N-Ac-PCBC, 14C labelled, was synthesised. It was intensively metabolised by cytosolic but not by microsomal enzymes from rat liver and kidney. The major metabolite identified by GC/MS was pentachlorobutadienylcysteine, the amount produced being highest in kidney cytosol. Metabolic conversion of 14C-N-Ac-PCBC by kidney and liver cytosol resulted in covalent binding of radioactivity to protein, binding was strongly inhibited by the β-lyase inhibitor aminooxyacetic add (AOAA). N-Ac-TCVC and N-Ac-DCVC were also transformed by cytosolic enzymes to the corresponding cysteine conjugates (trichlorovinylcysteine and dichlorovinylcysteine). The three mercapturic acids tested were strong mutagens in the Ames-test after addition of rat kidney cytosol. In the absence of cytosol, N-Ac-TCVC and N-Ac-DCVC were weakly but definitely mutagenic, whereas N-Ac-PCBC was not. In contrast to N-Ac-PCBC, the “direct” mutagens N-Ac-TCVC and N-Ac-DCVC were both transformed to pyruvate by bacterial ( S typhimurium TA100) homogenate 100,000 g supernatants. It is concluded that mercapturic acids are deacetylated to the corresponding cysteine conjugates by cytosolic (N-Ac-PCBC, N-Ac-TCVC and N-Ac-DCVC) and bacterial enzymes (N-Ac-TCVC and N-Ac-DCVC) and further cleaved to reactive and mutagenic intermediates by mammalian and/or bacterial β-lyase. The observed activation mechanisms for the mercapturic acids, whose formation from hexa-chlorobutadiene, tetrachloroethylene and trichloroethylene has been proven, might contribute to the nephrotoxicity and nephrocarcinogenicity of the parent alkenes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call