Abstract
A general and efficient method has been developed to generate large numbers of single-base substitution mutations simply and rapidly. A unique f1 phage recombinant DNA cloning vector is described, which contains the phi X174 origin of viral strand DNA synthesis and allows one to direct mutagenesis to any specific segment of DNA. Gapped circular DNA is constructed by annealing viral single-stranded circular DNA [ss(c) DNA] with a mixture of linear duplex DNAs that have had their 3'-OH termini processively digested with Escherichia coli exonuclease III under conditions in which the resulting, newly generated 3'-OH termini present in the various hybrid molecules span the region of interest. Base changes are induced by misincorporation of an alpha-thiodeoxynucleoside triphosphate analog onto this primer-template, followed by DNA repair synthesis. The asymmetric segregation of mutants from wild-type sequences is accomplished by double-stranded replicative form DNA----ss(c) DNA synthesis in vitro, initiated from the phi X174 viral strand origin sequence present on the vector DNA. Mutated ss(c) DNA is screened by the dideoxy chain termination method. In one mutagenesis experiment, 21 independent single-base substitutions were isolated in a 72-nucleotide-long target region. DNA sequence analysis showed that all possible base transversions and transitions were represented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.