Abstract
Naturally occurring DNA contains four canonical bases, forming two Watson-Crick base pairs (adenine-thymine, guanine-cytosine). Efforts over the past decades have led to the development of several unnatural base pairs, enabling the synthesis of unnatural DNA with an expanded genetic alphabet. The engineering of organisms capable of de novo biosynthesis of unnatural DNA would have significant technological and philosophical implications, but remains a challenge. Here we report the enzymatic conversion of 2'-deoxyxanthosine 5'-monophosphate (dXMP) into deoxyisoguanosine monophosphate (dBMP), a precursor of the unnatural isoguanine-isocytosine base pair. The reaction is catalyzed by the bacteriophage enzyme PurZ and bacterial PurB, and is a key addition to the toolbox for de novo biosynthesis of unnatural DNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chembiochem : a European journal of chemical biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.