Abstract
Recently, sugar polymers have been considered for use as biomaterials in medical applications. These biomaterials are already used extensively in burn dressings, artificial membranes, and contact lenses. In this study, we investigated the optimum conditions under which the enzymatic synthesis of sorbitan methacrylate can be affected using Novozym 435 in t-butanol from sorbitan and several acyl donors (ethyl methacrylate, methyl methacrylate, and vinyl methacrylate). The enzymatic synthesis of sorbitan methacrylate, catalyzed by Novozym 435 in t-butanol, reached an approx 68% conversion yield at 50 g/L of 1,4-sorbitan, 5% (w/v) of enzyme content, and a 1:5 molar ratio of sorbitan to ethyl methacrylate, with a reaction time of 36 h. Using methyl methacrylate as the acyl donor, we achieved a conversion yield of approx 78% at 50 g/L of 1,4-sorbitan, 7% (w/v) of enzyme content, at a 1:5 molar ratio, with a reaction time of 36 h. Sorbitan methacrylate synthesis using vinyl methacrylate as the acyl donor was expected to result in a superior conversion yield at 3% (w/v) of enzyme content, and at a molar ratio greater than 1:2.5. Higher molar ratios of acyl donor resulted in more rapid conversion rates. Vinyl methacrylate can be applied to obtain higher yields than are realized when using ethyl methacrylate or methyl methacrylate as acyl donors in esterification reactions catalyzed by Novozym 435 in organic solvents. Enzyme recycling resulted in a drastic reduction in conversion yields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.