Abstract

AbstractEnzymatic synthesis is the preferred way to produce so‐called “natural products.” Hydrolases have been used for short‐chain ester synthesis. These esters present a pleasant flavor and they have a lot of applications in different industries. Novozym 435 from Candida antarctica (EC 3.1.1.3, triacylglycerol lipase) was used for hexyl ester synthesis in n‐hexane and supercritical carbon dioxide (SCCO2). Direct esterification provided higher yields than transesterification for the synthesis of esters. Several carboxylic acids of different chain lengths were tested for the esterification reactions: acetic, propionic, butyric, caproic and caprylic acids. The reactions were carried out at 40°C and the amount of enzyme used was 13.8 g/mol alcohol. Substrates were added at equimolar concentrations, with sufficient stirring to avoid external diffusion control. Different substrate concentrations up to 1.5 M were used. The working pressure was 14 MPa in the case of SCCO2 and atmospheric pressure in the case of organic solvent. The results in both solvents show that the reaction rate increases with the chain length of the acid, but the final yields were similar. However, some of the reactions prove to be faster in SCCO2, except for hexyl acetate and propionate synthesis, in which acetic and propionic acid presented a lower solubility in SCCO2 due to its high polarity. Moreover, an acetic acid concentration of 1.5 M brought about a strong inhibition of the enzyme activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.