Abstract

Corylifol A, a member of the isoflavone subclass of isoflavonoids, has long been considered to have various biological activities. Here, we sought to synthesize corylifol A glucosides by the in vitro glucosylation reaction using the UDP-glycosyltransferase YjiC from Bacillus licheniformis DSM 13, and obtained two novel glucosides: corylifol A-4′,7-di-O-beta-d-glucopyranoside (1) and corylifol A-4′-O-beta-d-glucopyranoside (2). To improve the yield of the products, the reaction time, concentration of UDP-glucose, and pH of the buffer were optimized. The Michaelis constant (Km) was calculated to be 2.88 mM, and the maximal velocity (Vmax) was calculated to be 77.32 nmol/min/mg for UDP-glycosyltransferase. Meanwhile, the water-solubility of compounds 1 and 2 was approximately 27.03 and 15.13 times higher, respectively, than that of their parent compound corylifol A. Additionally, the corylifol A glycosylated products exhibited the highest stability at pH 9.6 and better temperature stability than corylifol A at 40, 60, 80 and 100 °C. In addition, cytotoxicity activity assays against three human tumor cell lines, only corylifol A showed moderate anti-proliferative activity. Overall, this work demonstrates that glycosylation can enhance the water solubility and stability of promising compounds, with potential for further development and application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.