Abstract

The reaction of ethyl isonicotinate (ethyl 4-pyridine carboxylate) with hydrazine hydrate as a nucleophile was conducted in 1,4-dioxane as a solvent to produce 4-pyridine carboxylic acid hydrazide (isoniazid) with different immobilized lipases. Isoniazid is an important agent in the treatment of tuberculosis and it can be synthesized via Novozym 435 as the catalyst. Equimolar quantities of reactants (3.33 × 10 −4 mol/cm 3 each) in 30 mL solution with 1.67 × 10 −3 g/cm 3 Novozym 435 leads to 52% conversion in 24 h. Based on the initial rate studies and concentration profiles (progress curve) analysis, a complete rate equation is proposed taking into account the irreversible inactivation caused by ethyl isonicotinate at very high concentrations. The kinetic model follows the ternary complex mechanism with dead end inhibition by ethyl isonicotinate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.