Abstract
The enzymatic synthesis of fructose 1,6-diphosphate (FDP), an important glycolytic intermediate whose applications in the field of medicine have generated a great deal of interest, was performed in a batch reactor and a semibatch reactor. Using the batch reactor, FDP was first synthesized from glucose by three enzymatic reactions and the ATP consumed was regenerated simultaneously using conjugated enzymes, all of which were purified from crude cell extract of thermophilic Bacillus stearothermophilus. The results of the experiments performed using several enzyme concentrations suggest the existence of an optimum concentration for each enzyme at which the maximum FDP yield can be attained. Since the thermal decomposition of acetyl phosphate reduced the yield of FDP in the batch reactor, the use of a semibatch reactor in which acetyl phosphate was fed continuously was examined. The yield of FDP was improved but the time required to complete the reaction was longer, resulting in a lower productivity of FDP. The yields observed in the two reactors using various enzyme and substrate concentrations were in good agreement with the theoretical predictions calculated based on differential equations derived for the system using the rate equations and the kinetic parameters determined previously. This means that these equations can be used for the analysis of the experimental results as well as for determining the optimum experimental conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.