Abstract

Many O-glucuronides exhibiting various pharmacological activities have been found in nature and in drug metabolism. The glucuronidation of bioactive natural products or drugs to generate glucuronides with better activity and druggability is important in drug discovery and research. In this study, by using two uridine diphosphate (UDP)-dependent glucuronosyltransferases (GATs, UGT88D4 and UGT88D7) from plants, we developed two glucuronidation approaches, pure enzyme catalysis in vitro and recombinant whole-cell catalysis in vivo, to efficiently synthesize bioactive O-glucuronides by the glucuronidation of natural products. In total, 14 O-glucuronides with different structures, including flavonoids, anthraquinones, coumarins, and lignans, were obtained, 7 of which were new compounds. Furthermore, one of the biosynthesized O-glucuronides, kaempferol-7- O-β-d-glucuronide (3a), potently inhibited protein tyrosine phosphatase (PTP) 1B with an IC50 value of 8.02 × 10-6 M. Some of the biosynthesized O-glucuronides also exhibited significant antioxidant activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.