Abstract
The enzymatic synthesis of a mixture of unsaturated fatty acid alpha-butylglucoside esters, containing more than 60% alpha-butylglucoside linoleate, was achieved through lipase-catalyzed esterification. The continuous evaporation under reduced pressure of the water produced enabled substrate conversions greater than 95% to be reached. Two immobilized lipases from Candida antarctica (Chirazyme L2, c.-f., C2) and Rhizomucor miehei (Chirazyme L9, c.-f.) were compared in stirred batch and packed bed configurations. When the synthesis was carried out in stirred batch mode, C. antarctica lipase appeared to be of greater interest than the R. miehei enzyme in terms of stability and regioselectivity. Surprisingly, a change in the process design to a packed bed configuration enabled the stability of R. miehei lipase to be significantly improved, while the C. antarctica lipase efficiency to synthesize unsaturated fatty acid alpha-butylglucoside esters was slightly decreased. Water content in the microenvironment of the biocatalyst was assumed to be responsible for such changes. When the process is run in stirred batch mode, the conditions used promote the evaporation of the essential water surrounding the enzyme, which probably leads to R. miehei lipase dehydration. In contrast, the packed bed design enabled such water evaporation in the microenvironment of the biocatalyt to be avoided, which resulted in a tremendous improvement of R. miehei lipase stability. However, C. antarctica lipase led to the formation of 3% diesters, whereas the final percentage of diesters reached 21% when R. miehei enzyme was used as biocatalyst. A low content of diesters is of greater interest in terms of alpha-butylglucoside linoleate application as linoleic acid carrier, and therefore the enzyme choice will have to be made depending on the properties expected for the final product.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.