Abstract

The semisynthesis of eel[L-alpha-aminosuberic acid]calcitonin (elcatonin) was accomplished by alpha-chymotrypsin-catalyzed coupling of two peptide segments in a single reaction without the protection of any functional group. The eel calcitonin-(10-32)-peptide was prepared by a gene manipulation. The esters of cyclic desamino nonapeptide (segment 1-9) were synthesized by the conventional solution method including a thermolysin-mediated resolution of DL-alpha-aminosuberic acid via one-step tripeptide synthesis leading to the 7-9 sequence. The main aim of this work was to determine the conditions for protease-catalyzed segment condensation while avoiding a concurrent cleavage of other proteolytically labile peptide bonds in the hormone. The alpha-chymotrypsin condensation strategy under usual conditions led to a complicated mixture of split products with an insignificant amount of the required peptide. When the coupling reaction was carried out at 0 degrees C, the reaction resulted in a satisfactory yield of elcatonin with the complete conversion of the acyl donor (1-9 segment) accompanied by negligible concurrent peptide bond digestion. The same strategy was employed for the preparation of analogous dicarba salmon calcitonin using a synthetic elcatonin-(10-32)-peptide. Both calcitonin analogs exhibited hypocalcemic activity corresponding to the international standard of elcatonin. We demonstrate in this work a peptide synthesis based on the combination of genetic engineering, chemical synthesis and proteinase-catalyzed segment condensation. This approach enables effective incorporation of an unnatural amino acid into calcitonins without the side-chain protection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call