Abstract

Promysalin is an amphipathic antibiotic isolated from Pseudomonas promysalinigenes (previously Pseudomonas putida RW10S1) which shows potent antibacterial activities against Gram-negative pathogens by inactivating succinate dehydrogenase. Based on the in-vivo studies, promysalin is hypothesized to be assembled from three building blocks: salicylic acid, proline, and myristic acid via a proposed but uncharacterized hybrid NRPS-PKS biosynthetic pathway. So far, no in-vitro biosynthetic studies have been reported for this promising antibiotic. Here, we report the first in-vitro reconstitution and biochemical characterization of two early enzymes on the pathway: PpgH, an isochorismate synthase (IS), and PpgG, an isochorismate pyruvate lyase (IPL) which are involved in the biosynthesis of salicylic acid, the polar fragment of promysalin. We also report a secondary chorismate mutase (CM) activity for PpgG. Based on our biochemical experiments, preliminary mechanistic proposals have been postulated for PpgH and PpgG. We believe this study will lay a strong foundation for elucidating the functions and mechanisms of other intriguing enzymes of the promysalin biosynthesis pathway, which may potentially unravel interesting enzyme chemistries and promote pathway engineering in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call