Abstract
Traditionally, enzymatic synthesis of nucleoside-5′-monophosphates (5′-NMPs) using low water-soluble purine bases has been described as less efficient due to their low solubility in aqueous media. The use of enzymes from extremophiles, such as thermophiles or alkaliphiles, offers the potential to increase solubilisation of these bases by employing high temperatures or alkaline pH. This study describes the cloning, expression and purification of hypoxanthine-guanine-xanthine phosphoribosyltransferase from Thermus thermophilus (TtHGXPRT). Biochemical characterization indicates TtHGXPRT as a homotetramer with excellent activity and stability across a broad range of temperatures (50–90°C) and ionic strengths (0–500mMNaCl), but it also reveals an unusually high activity and stability under alkaline conditions (pH range 8–11). In order to explore the potential of TtHGXPRT as an industrial biocatalyst, enzymatic production of several dietary 5′-NMPs, such as 5′-GMP and 5′-IMP, was carried out at high concentrations of guanine and hypoxanthine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.