Abstract
A novel fiber-based biosorbent for dyes removal and microbial inactivation was prepared by enzymatic oxidization of viscose fibers and further modification with ε-polylysine. Glucose oxidase (GOx) was first employed as the enzyme for oxidation of viscose fibers. The consequences illustrated that the hydroxyl group on C1 position of viscose fibers was successfully oxidized with oxidation ratio of 2.43 ± 0.31%. Subsequently, ε-polylysine with average molecular weight of 4.44 ± 1.13 KDa and antimicrobial activity to E. coli of 90.48 ± 1.64 was modified with oxidized viscose fibers by lipase. Experimental results showed that oxidized viscose fibers were successfully modified with ε-polylysine with optimum degree of modification (DM) of 13.56 ± 1.05%. This oxidized viscose fiber modified with ε-polylysine (OVF-PL) displayed good dyes adsorption (or dyes removal) capacity for both anionic and cationic dyes, especially for anion dyes. Furthermore, OVF-PL showed excellent antimicrobial activity against E. coli and B. subtilis, particularly for E. coli, with GIB of 92.65%. Such fiber-based may offer a new pathway for preparing economical and efficient biosorbent for environmental remedy purpose.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.