Abstract

Threonyl-tRNA synthetase (ThrRS) is a class II aminoacyl-tRNA synthetase (aaRS), which are a ubiquitous family of enzymes that have a vital role in protein biosynthesis. In particular, it catalyzes the activation and subsequent aminoacylation of its corresponding tRNAThr. Because of the close structural and electronic similarity between its cognate substrate threonine and the noncognate serine, the catalytic aminoacylation site of ThrRS is not able to fully discriminate between them. In this study we have explored multiple possible post-transfer editing mechanisms for ThrRS from Escherichia coli. The editing site is known to contain two conserved histidyls (His73 and His186) and a cysteinyl (Cys182), all of which could act as the required mechanistic base. We have performed detailed molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) studies in which the protonation states of each of these residues was varied. Furthermore, using the various substrate-bound active site models obtained...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.