Abstract

A cellulose-chitin hybrid polysaccharide having alternatingly beta(1-->4)-linked D-glucose (Glc) and N-acetyl-d-glucosamine (GlcNAc) was synthesized via two modes of enzymatic polymerization. First, a sugar oxazoline monomer of Glcbeta(1-->4)GlcNAc (1) was designed as a transition-state analogue substrate (TSAS) monomer for chitinase catalysis. Monomer 1 was recognized by chitinase from Bacillus sp., giving rise to a cellulose-chitin hybrid polysaccharide (2) via ring-opening polyaddition with perfect regioselectivity and stereochemistry. Molecular weight (M(n)) of 2 reached 4030, which corresponds to 22 saccharide units. Second, a sugar fluoride monomer of GlcNAcbeta(1-->4)Glc (3) was synthesized for the catalysis of cellulase from Trichoderma viride. The enzyme catalyzed polycondensation of 3, providing a cellulose-chitin hybrid polysaccharide (4) in regio- and stereoselective manner. M(n) of 4 reached 2840, which corresponds to 16 saccharide units. X-ray diffraction measurements revealed that these hybrid polysaccharides did not form any characteristic crystalline structures. Furthermore, these unnatural hybrids of 2 and 4 were successfully digested by lysozyme from human neutrophils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.