Abstract

AbstractEnzymatic hydrolysis of insoluble soybean protein by a protease enzyme produced by Penicillium duponti K 1104, was investigated in a batch reactor. The reaction conditions were 30–55°C and pH 3.4–3.7. The mechanism of solubilization of the insoluble protein by the Penicillium duponti enzyme was deduced from a series of experiments. Kinetic models were developed that involved adsorption followed by peptic digestion of protein, inhibition of low‐molecular‐weight peptides, and enzyme deactivation. The uncoupled kinetic parameters were estimated using the Marquardt nonlinear parameter estimation algorithm. A bang–bang production of soluble and partially soluble protein is suggested for higher productivity. The essential amino acids pattern of the enzyme‐Hydrolyzed soy protein was comparable with the unhydrolyzed protein isolate. Aggregation of the soluble protein for an extended time was observable. The low‐molecular‐weight soluble protein was incorporated into noncarbonated beverages. The amount of protein that could be incorporated into a can of 355 ml noncarbonated beverage, without observable changes in the optical density and also aggregation of the protein, was 2.5 g soluble protein. Beverages with caramel color showed excessive decrease in optical density and precipitation. The kinetics and diffusion in a multipore immobilized‐enzyme recycle reactor will be considered in part II of this series.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call