Abstract

Fish protein isolate were recovered from frozen small croaker using pH shift. The partial enzymatic hydrolysates were fractionated as soluble and insoluble parts. They were dried using the drum dryer and their functional properties were examined. The total nitrogen content of the enzymatic hydrolysates ranged from 12.9% to 13.7%. The degree of hydrolysis of precipitates was 18.2% and 12.2% for croaker hydrolysates treated with Protamex 1.5 MG (Bacilllus protease complex) and Flavourzyme 500 MG (endoproteases and exoproteases, Aspergillus oryzae), respectively. The TCA supernatant, after centrifugation of hydrolysates, contained numerous peptides ranging from 100 to 4000 daltons. The solubility of the supernatants was higher than that of the precipitates at 0% to 3% NaCl and pH 2 to 10. The precipitate of Flavourzyme- and Protamex-treated hydrolysates showed a high emulsion activity index value compared to egg white and bovine plasma protein. In addition, the highest emulsion stability was observed for Protamex-treated precipitate hydrolysates. Emulsion stability of Protamex-treated precipitate hydrolysates was comparable to those of protein additives (egg white, bovine plasma protein, and soy protein concentrate). Water and fat binding capacity of precipitates were higher than those of supernatant. The results indicate that precipitate hydrolysate from undersized croaker can be used in processed muscle foods as a functional and nutritional ingredient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.