Abstract

The enzymatic hydrolysis of quinizarin diester in silica nanoparticle (NP) of 200 nm diameter is investigated by confocal fluorescence microscopy. The quinizarin diester substrate and the intermediate quinizarin monoester are non-fluorescent species and only the end product—quinizarin formed by enzymatic hydrolysis produces intense fluorescence of the silica NP. The enzyme activity of lipase adsorbed into silica NP was similar to that observed for lipase chemically bound to silica surface. In both situations, partial aggregation of the silica NP dispersed in thin film of polyvinylpyrrolidone was observed from fluorescence and scanning electron microscopy images. The fluorescence decay of the end product—quinizarin in silica NP was biexponential with decay times of 0.49 and 2.17 ns. These two decay times found are ascribed to quinizarin adsorbed in silica NP and dispersed in the surrounding medium, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call