Abstract

Methyltransferases (MTases) have become an important tool for site-specific alkylation and biomolecular labelling. In biocatalytic cascades with methionine adenosyltransferases (MATs), transfer of functional moieties has been realized starting from methionine analogues and ATP. However, the widespread use of S-adenosyl-l-methionine (AdoMet) and the abundance of MTases accepting sulfonium centre modifications limit selective modification in mixtures. AdoMet analogues with additional modifications at the nucleoside moiety bear potential for acceptance by specific MTases. Here, we explored the generation of double-modified AdoMets by an engineered Methanocaldococcus jannaschii MAT (PC-MjMAT), using 19 ATP analogues in combination with two methionine analogues. This substrate screening was extended to cascade reactions and to MTase competition assays. Our results show that MTase targeting selectivity can be improved by using bulky substituents at the N6 of adenine. The facile access to >10 new AdoMet analogues provides the groundwork for developing MAT-MTase cascades for orthogonal biomolecular labelling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.