Abstract

Hummingbirds (family Trochilidae) are among the smallest endothermic vertebrates representing an extreme, among birds, in their physiological design. They are unique in their ability to sustain hovering flight, one of the most energetically demanding forms of locomotion. Given that hovering metabolic rate (HMR) in hummingbirds scales allometrically as M0.78(M is mass), we tested the hypothesis that variation in HMR may be correlated with variation in maximal enzyme activities (Vmaxvalues) of key enzymes in glucose and fatty acid oxidation pathways in the flight muscles of four species of hummingbirds ranging in body mass from 4 to 20 g. We also estimated metabolic flux rates from respirometric data obtained during hovering flight. The data are striking in the lack of correlation between Vmaxvalues and flux rates at most steps in energy metabolism, particularly at the hexokinase and carnitine palmitoyltransferase reactions. In the context of hierarchical regulation analysis, this finding suggests that metabolic regulation (resulting from variation in substrate, product, or allosteric regulator concentrations) dominates as the proximate explanation for the interspecific variation in flux. On the other hand, we found no evidence of hierarchical regulation of flux, which results from variation in Vmaxand is based on variation in enzyme concentration [E]. The evolutionary conservation of pathways of energy metabolism suggests that “one size fits all” among hummingbirds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call