Abstract

Sorbic acid is the most commonly used preservative in the food industry. The antimicrobial inhibition of sorbic acid could be influenced by its lipophilic nature, which reduces its use in hydrophilic food formulations. Reactions between sorbic acid and glycerol catalyzed by lipases were studied in order to develop a novel sorbic acid derivate with a promising hydrophilic profile. The esterification reaction between sorbic acid and glycerol in a solvent-free system were performed with an immobilized lipase B from Candida antarctica (CALB). The glycerol sorbate product has been tested against S. griseus bacterium and Saccharomyces cerevisiae yeast. Results indicate that the esterification of sorbic acid with glycerol does improve its antimicrobial properties against Saccharomyces cerevisie. The reported results demonstrate that esterification can be used as a strategy to improve the antimicrobial activity of sorbic acid.

Highlights

  • Sorbic acid is a straight-chain alpha-beta-unsaturated fatty acid first isolated from the oil of unripe rowanberries in 1859 [1]

  • The reported results demonstrate that esterification can be used as a strategy to improve the antimicrobial activity of sorbic acid

  • The antimicrobial action of sorbates occurs at various stages of microbial life cycle [4] and it may result in the alteration of the cell membrane, in the inhibition of transport systems and key enzymes, the creation of a proton flux into the cell, the inhibition of oxidative phosphorylation, or in a synergic effect of two or more of these factors [5,6]

Read more

Summary

Introduction

Sorbic acid is a straight-chain alpha-beta-unsaturated fatty acid first isolated from the oil of unripe rowanberries in 1859 [1]. It acts as inhibitor of most molds, yeast, and some bacteria [2]. Sorbate acts as a competitive and reversible inhibitor of amino acid-induced germination [7], of several enzyme systems’ activity (alcohol dehydrogenase, fumarase, anolase, aspartase, catalase, malate dehydrogenase, alfa-ketoglutarate dehydrogenase, succinic dehydrogenase, and ficin) [8], and of nutrient uptake [9]. The antifungal activity of sorbic acid seems to be related to an interference with the electrochemical membrane potential across the mitochondrial membranes [10]. Potassium sorbate is the most employed salified form of sorbic acid

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call