Abstract

A novel enzymatic electrochemical biosensor was fabricated for the indirect detection of glyphosate-based acid phosphatase inhibition. The biosensor was constructed on a screen-printed carbon electrode modified with silver nanoparticles, decorated with electrochemically reduced graphene oxide, and chemically immobilized with acid phosphatase via glutaraldehyde cross-linking. We measured the oxidation current by chronoamperometry. The current arose from the enzymatic reaction of acid phosphatase and the enzyme-substrate disodium phenyl phosphate. The biosensing response is a decrease in signal resulting from inhibition of acid phosphatase in the presence of glyphosate inhibitor. The inhibition of acid phosphatase by glyphosate was investigated as a reversible competitive-type reaction based on the Lineweaver-Burk equation. Computational docking confirmed that glyphosate was the inhibitor bound in the substrate-binding pocket of acid phosphatase and that it was able to inhibit the enzyme efficiently. Additionally, the established method was applied to the selective analysis of glyphosate in actual samples with satisfactory results following a standard method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call