Abstract

The extensive production and use of polyethylene terephthalate (PET) have generated an enormous amount of plastic waste, which potentially threatens the environment and humans. Enzyme biocatalysis is a promising green chemistry alternative, relative to the conventional fossil-derived production process, to achieve plastic waste treatment and recycling. In this work, we created a biocatalyst, BIND-PETase, by genetically engineering the curli of an Escherichia coli cell with a functional PETase enzyme for biocatalytic degradation of PET plastics. BIND-PETase could degrade PET to generate degradation products at the concentration level of greater than 3000 μM under various reaction conditions. The effects of key reaction parameters, including pH, temperature, plastic substrate mass load, and surfactant addition were characterized. BIND-PETase was reusable for PET degradation and remained stable with no significant enzyme activity loss when stored at both 4 °C and room temperature for 30 days (Student’s t test, p > 0.05). Notably, BIND-PETase could enable the degradation of PET microplastics in wastewater effluent matrix. Moreover, BIND-PETase could depolymerize highly crystalline postconsumer PET waste materials under ambient conditions with degradation efficiency of 9.1% in 7 days. This study provides a new horizon for developing environmentally friendly biocatalytic approaches to solve the plastic degradation and recycling challenge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call