Abstract
Organophosphorus insecticides (OPs) are toxic compounds used for agricultural purposes and responsible for severe types of contamination worldwide. OPs may also induce chronic deleterious effects and developmental disruption. Finding remediation strategies is a major concern to diminish their impact on environment and human health. Enzymes have emerged as a promising eco-friendly route for decontaminating OPs. The enzyme SsoPox from the archaea Sulfolobus solfataricus has been particularly studied, considering both its tremendous stability and phosphotriesterase activity. However, the toxicity of the degradation products generated through enzyme hydrolysis has been poorly investigated. To address both neurotoxicity and developmental perturbation, freshwater planarians from Platyhelminthes were considered to evaluate the impact of OP and degradation product exposure. Planarians have a large proportion of stem cells that give them an unconventional capacity for regeneration. OPs were found to be highly toxic to planarians and enzyme decontamination drastically enhanced survival rate. Although not completely innocuous, the degradation products were found to be less toxic than insecticides and reduced poisoning effects by increasing NOEC values by up to eight-fold. SsoPox also limited detrimental consequences on planarian mobility and enabled them to recover a non-exposed type regeneration process suggesting that enzymatic decontamination is a promising alternative to bioremediation.
Highlights
Organophosphorus pesticides (OPs) are highly toxic chemicals that have been widely developed for agricultural purposes since the 1950s1
Enzyme decontamination would decrease the neurotoxicity of Organophosphorus insecticides (OPs), little is known about the toxicity of the generated degradation products and little research effort has been dedicated to their fate
We investigated the toxicity of four widely used insecticides, paraoxon-ethyl, parathion-ethyl, diazinon and fenitrothion, which have been widely used in agriculture, as well as their respective degradation products generated by enzymatic hydrolysis with SsoPox-αsD6
Summary
Organophosphorus pesticides (OPs) are highly toxic chemicals that have been widely developed for agricultural purposes since the 1950s1. Evolutionary considerations have suggested that AChE from Platyhelminthes, including planarian and Schistosoma, are probably early cholinesterase related to other lower vertebrates such as the medaka Oryzias latipes and the hagfish Myxine glutinosa[28,29,30] Such evolutionary trajectory may explain the difference in sensitivity to OP exposure with higher vertebrates for which a gene duplication event lead to a divergence between AChE and butyrylcholinesterase[31]. OPs were shown to be toxic to planarians and to affect both mobility and regeneration capacity while the use of a decontaminating enzyme drastically decreased the deleterious effects of OPs. The global toxicity of both pesticides and their corresponding degradation products were assessed and the results underlined the strong potential of SsoPox for bioremediation
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.