Abstract

Ginkgo biloba leaf extract contains many active ingredients that are beneficial for health. However, ginkgolic acid, one of the major components found in G. biloba extract, may cause serious allergic and toxic side effects. The purpose of this study is to immobilize the laccase system on the electrospun nylon fiber mat (NFM) to hydrolyze the ginkgolic acid in G. biloba leaf extract efficiently. Novel electrospinning technology successfully produced high-quality nanoscopic fiber mats made of a mixture of multi-walled carbon nanotube and nylon 6,6. Laccase that was immobilized onto the NFM exhibited much higher efficiency in the catalyzation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) than nylon 6,6 pellets. After being immobilized onto the NFM, the pH and temperature stability of laccase were significantly improved. The NFM-immobilized laccase could maintain more than 50% of its original activity even after 40 days of storage or 10 operational cycles. The kinetic parameters, including rate constant (K), the time (τ50) in which 50% of ginkgolic acid hydrolysis was reached, the time (τcomplete) required to achieve complete ginkgolic acid hydrolysis, Km and Vmax were determined, and were 0.07 ± 0.01 min-1 , 8.97 ± 0.55 min, 45.45 ± 2.79 min, 0.51 ± 0.09 mM and 0.49 ± 0.03 mM min-1 mg-1 , respectively. The result successfully demonstrated the strong potential of using novel electrospun nanofiber mats as enzyme immobilization platforms, which could significantly enhance enzyme activity and stability. © 2020 Society of Chemical Industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.