Abstract

In this study, covalent immobilization of the horseradish peroxidase (HRP) onto various polysulfone supports was investigated. For this purpose, different polysulfones were methacrylated with methacryloyl chloride, and then, nonwoven fabric samples were coated by using solutions of these methacrylated polysulfones. Finally, support materials were immersed into aquatic solution of HRP enzyme for covalent immobilization. Structural analysis of enzyme immobilization onto various polysulfones was confirmed with Fourier transform infrared spectroscopy, atomic force microscopy, and proton nuclear magnetic resonance spectroscopy. Decolorization of textile diazo (Acid Black 1) and anthraquinone (Reactive Blue 19) dyes was investigated by UV-visible spectrophotometer. Covalently immobilized enzyme has been used seven times in freshly prepared dye solutions through 63 days. Dye decolorization performance of the immobilized systems was observed that still remained high (70%) after reusing three times. Enzyme activities of immobilized systems were determined and compared to free enzyme activity at different conditions (pH, temperature, thermal stability, storage stability). Enzyme activities of immobilized systems and free enzyme were also investigated at the different temperatures and effects of temperature and thermal resistance for different incubation time at 50 °C. In addition, storage activity of free and immobilized enzymes was determined at 4 °C at different incubation days.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.