Abstract

In order to trap the carbocation intermediates formed during the squalene cyclization cascade, squalene analogs with threo- and erythro-diols at the 6,7- and 10,11-positions were incubated with the recombinant squalene cyclase from Alicyclobacillus acidocaldarius, leading to the construction of the triterpenes with tetrahydropyran, octahydrochromene, decahydronaphthalene with a carbonyl group, dodecahydrobenzo[f]chromene, tetradecahydronaphtho[2,1-b]oxepine and malabaricane skeletons, almost of which are novel compounds. These products indicate that 6-membered monocyclic, 6/6-fused bicyclic and 6/6/5-fused tricyclic cations were involved in the cyclization reaction in addition to acyclic cation. All the trapped cations were the stable tertiary cation, but not the secondary one, indicating that the polycyclization reaction proceeds with a Markovnikov closure. The product profiles revealed that the cyclization reactions proceeded with the product and substrate specificities in addition to enantioselectivity. Mechanistic insight into the observed stereochemical specificities indicated that the pre-organized chair-conformation of squalene-diols is tightly constricted by the cyclase and a free motion or a conformational change is not allowed in the reaction cavity, thus, the substrate and product specificities are dominantly directed by the least motion of the nucleophilic hydroxyl group toward the intermediary carbocation; a small rotation of the hydroxyl group afforded the cyclization products in a good yield, but a large rotation of the hydroxyl group gave a marginal or no detectable amount of products.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call