Abstract

Background2,5-Furandicarboxylic acid (FDCA) is one of the top biomass-derived value-added chemicals. It can be produced from fructose and other C6 sugars via formation of 5-hydroxymethilfurfural (HMF) intermediate. Most of the chemical methods for FDCA production require harsh conditions, thus as an environmentally friendly alternative, an enzymatic conversion process can be applied.ResultsCommercially available horseradish peroxidase (HRP) and lignin peroxidase (LPO), alcohol (AO) and galactose oxidase (GO), catalase (CAT) and laccase (LAC) were tested against HMF, 2,5-diformylfuran (DFF), 5-hydroxymethyl-2-furoic acid (HMFA) and 5-formyl-2-furoic acid (FFA). Enzyme concentrations were determined based on the number of available active sites and reactions performed at atmospheric oxygen pressure. AO, GO, HRP and LPO were active against HMF, where LPO and HRP produced 0.6 and 0.7% of HMFA, and GO and AO produced 25.5 and 5.1% DFF, respectively. Most of the enzymes had only mild (3.2% yield or less) or no activity against DFF, HMFA and FFA, with only AO having a slightly higher activity against FFA with an FDCA yield of 11.6%. An effect of substrate concentration was measured only for AO, where 20 mM HMF resulted in 19.5% DFF and 5 mM HMF in 39.9% DFF, with a Km value of 14 mM. Some multi-enzyme reactions were also tested and the combination of AO and CAT proved most effective in converting over 97% HMF to DFF in 72 h.ConclusionsOur study aimed at understanding the mechanism of conversion of bio-based HMF to FDCA by different selected enzymes. By understanding the reaction pathway, as well as substrate specificity and the effect of substrate concentration, we would be able to better optimize this process and obtain the best product yields in the future.

Highlights

  • With the world’s fossil fuel resources being rapidly depleted and with an increasing concern about global warming, the production of bio-based fuels and platform chemicals from renewable sources has gained much interest [1]

  • furandicarboxylic acid (FDCA) and its derivates can be applied in many fields, but the most promising use of this chemical is in the replacement of tetraphthalate in oil-based plastics like polyethylene terephthalates (PET) [4, 5]

  • A small part of the decrease in DFF content could be assigned to its conversion to formyl-2-furoic acid (FFA)

Read more

Summary

Introduction

With the world’s fossil fuel resources being rapidly depleted and with an increasing concern about global warming, the production of bio-based fuels and platform chemicals from renewable sources has gained much interest [1]. To switch from petroleum-based to biomass-based chemicals, new processes and technologies have to be developed [3]. One such important platform chemical is 2,5-furandicarboxylic acid (FDCA). Most chemical methods for production of FDCA from HMF require harsh conditions like organic solvents, high temperature and pressure and special salts. This requires high energy expenditure as well as causes environmental pollution [7,8,9,10]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call