Abstract
We report here a concept converting carbon dioxide to biocarbonate in a biomimetic nanoconfiguration. Carbonic anhydrase (CA), the fastest enzyme that can covert carbon dioxide to bicarbonate, can be spontaneously entrapped in carboxylic acid group-functionalized mesoporous silica (HOOC-FMS) with super-high loading density (up to 0.5mg of protein/mg of FMS) in sharp contrast to normal porous silica. The binding of CA to HOOC-FMS resulted in a partial conformational change comparing to the enzyme free in solution, but it can be overcome with increased protein loading density. The higher the protein loading density, the less conformational change, hence the higher enzymatic activity and the higher enzyme immobilization efficiency (up to >60%). The released enzyme still displayed the native conformational structure and the same high enzymatic activity as that prior to the enzyme entrapment, indicating that the conformational change resulted from the electrostatic interaction of CA with HOOC-FMS was not permanent. This work may provide a new approach converting carbon dioxide to biocarbonate that can be integrated with the other part of biosynthesis process for the assimilation of carbon dioxide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.