Abstract

Each plant genome contains a repertoire of β-mannanase genes belonging to glycoside hydrolase family 5 subfamily 7 (GH5_7), putatively involved in the degradation and modification of various plant mannan polysaccharides, but very few have been characterized at the gene product level. The current study presents recombinant production and in vitro characterization of AtMan5-1 as a first step towards the exploration of the catalytic capacity of Arabidopsis thaliana β-mannanase. The target enzyme was expressed in both E. coli (AtMan5-1e) and P. pastoris (AtMan5-1p). The main difference between the two forms was a higher observed thermal stability for AtMan5-1p, presumably due to glycosylation of that particular variant. AtMan5-1 displayed optimal activity at pH 5 and 35 °C and hydrolyzed polymeric carob galactomannan, konjac glucomannan, and spruce galactoglucomannan as well as oligomeric mannopentaose and mannohexaose. However, the galactose-rich and highly branched guar gum was not as efficiently degraded. AtMan5-1 activity was enhanced by Co2+ and inhibited by Mn2+. The catalytic efficiency values for carob galactomannan were 426.8 and 368.1 min−1 mg−1 mL for AtMan5-1e and AtMan5-1p, respectively. Product analysis of AtMan5-1p suggested that at least five substrate-binding sites were required for manno-oligosaccharide hydrolysis, and that the enzyme also can act as a transglycosylase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.