Abstract

Alanine racemase is a pyridoxal-5′-phosphate (PLP)-dependent enzyme that reversibly catalyzes the conversion of l-alanine to d-alanine. d-alanine is an essential constituent in many prokaryotic cell structures. Inhibition of alanine racemase is lethal to prokaryotes, creating an attractive target for designing antibacterial drugs. Here we report the crystal structure of biosynthetic alanine racemase (Alr) from a pathogenic bacteria Pseudomonas aeruginosa PAO1. Structural studies showed that P. aeruginosa Alr (PaAlr) adopts a conserved homodimer structure. A guest substrate d-lysine was observed in the active site and refined to dual-conformation. Two buffer ions, malonate and acetate, were bound in the proximity to d-lysine. Biochemical characterization revealed the optimal reaction conditions for PaAlr.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.