Abstract

Microenvironment plays a significant role in enzymatic catalysis, which directly influences enzyme activity and stability. It is important to regulate the enzyme microenvironment, especially for the liquid with unfavored properties (e.g., pH and dissolved oxygen). In this work, we propose a methodology that can regulate pH and substrate concentration for enzymatic catalysis by a biocatalytic membrane, which is composed of glucose oxidase (GOx) and horseradish peroxidase (HRP) co-immobilized in a polyamide nanofiltration (NF) membrane (i.e., beneath the separation layer). By virtue of the selective separation function of NF membrane and in situ production of organic acid/electron donor with GOx, a synergism effect of separation and reaction in the liquid/solid interface was manipulated for engineering the microenvironment of HRP to enhance its activity and stability for micropollutant removal in water. The outcome of this work not only provides a new methodology to precisely control enzymatic reaction but also offers a smart membrane system to efficiently and steadily remove the micropollutants in portable water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.