Abstract

Evidence is presented for the operation in nodules of at least four systems for restoring functional ferrous leghemoglobin (LB2+) from its inactive, ferric form. (i) Reduction of ferric leghemoglobin (LB3+) by a reductase. The enzyme is a flavoprotein of 100 kDa with two equally sized subunits andexhibits a Km of 9 microM for soybean LB3+ component a and a Km of 51 microM for NADH. NADPH is only 30% (initial velocities) as effective as NADH. LB3+ reductase converts 215 nmol of LB3+ to LB2+.CO (or Lb2+.O2) per mg of protein per min and does not require an exogenous electron carrier. The enzyme shows similar affinity for soybean, bean, and cowpea LB3+, but different Vmax values. The reductase is inactive with LB3+ is bound to nicotinate or NO2-. (ii) Direct reduction of LB3+ by NAD(P)H, ascorbate, and cysteine. Reduction by NAD(P)H is greatly stimulated by trace amounts of metals such as Mn2+. (iii) Reduction of Lb3+ by the flow of electrons from NAD(P)H to free flavins to LB3+. The reaction does not occur via O2.- or H2O2, and thus NAD(P)H-reduced flavins can directly reduce LB3+. The efficiency of the reaction follows the order riboflavin > FMN > FAD. (iv) Reduction of LB3+ by an unknown compound, B, of nodules. B has a molecular mass < 1 kDa and is heat-stable. The reaction mediated by B differs from those mediated by flavins and metals in several ways, requires NAD(P)H, and generates O2.-.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call