Abstract

The impact of covalent attachment of (-)-epigallocatechin gallate (EGCG) to lactoferrin (LF) on the structure, morphology, functionality, and allergenicity of the protein was studied. These polyphenol-protein conjugates were formed using various enzymatic (laccase- and tyrosinase-catalyzed oxidation) and nonenzymatic (free radical grafting and alkali treatment) methods. The preparation conditions for forming the enzymatic conjugates were optimized by exploring the influence of order-of-addition effects: protein, polyphenols, and enzymes. The total phenol content of the LF-EGCG conjugates was quantified using the Folin-Ciocalteu method. The nature of the conjugates formed was determined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier transform infrared (FTIR) spectroscopy analyses. These studies showed that enzymatic cross-linking was a highly effective means of forming LF-EGCG conjugates. Analysis of these conjugates using various spectroscopic methods showed that conjugation to EGCG changed the molecular structure of LF. Atomic force microscopy showed that the four covalent cross-linking methods affected the size and morphology of these LF-EGCG conjugates formed. The antioxidant activity and emulsifying stability of LF were significantly improved by conjugation to EGCG. Finally, an enzyme-linked immunosorbent assay (ELISA) and a western blot assay indicated that conjugation of EGCG reduced the binding capacity of LF to immunoglobulin E (IgE) and immunoglobulin G (IgG), which is consistent with a decrease in allergenicity. Overall, this study suggests that LF-EGCG conjugates formed using enzymatic or nonenzymatic methods have potential applications as functional ingredients in foods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.