Abstract

The possible generation of oxidative stress induced by aromatic hydrocarbon degradation suggests that ancillary enzyme activities could facilitate the utilization of polycyclic aromatic hydrocarbons as sole carbon source. To investigate the metabolic profiles of low molecular weight polycyclic aromatic hydrocarbon-degrading strains of Sphingobium chlorophenolicum, Rhodococcus aetherovorans, Rhodococcus opacus and Mycobacterium smegmatis, the determination of the activity of putative detoxifying enzymes (rhodanese-like and glutathione S-transferase proteins) was combined with genetic analyses. All the studied strains were able to utilize phenanthrene or naphthalene. Glutathione S-transferase activity was found in S. chlorophenolicum strains grown on phenanthrene and it was related to the presence of the bphK gene, since modulation of glutathione S-transferase activity by phenanthrene paralleled the induction of glutathione S-transferase transcript in the S. chlorophenolicum strains. No glutathione S-transferase activity was detectable in R. aetherovorans, R. opacus and in M. smegmatis strains. All strains showed 3-mercaptopyruvate:cyanide sulfurtransferase activity. A rhodanese-like SseA protein was immunodetected in R. aetherovorans, R. opacus and in M. smegmatis strains, where increase of 3-mercaptopyruvate:cyanide sulfurtransferase activity was significantly induced by growth on phenanthrene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.