Abstract

AbstractEthanol‐soluble (ES) lecithin mainly contains phosphatidylcholine (PC). The incorporation of caprylic acid into PC using immobilized phospholipase A2 (PLA2) and lipase was investigated. The Rhizomucor meihei lipase and the porcine pancreatic PLA2 were immobilized on the hydrophobic resin Diaion HP‐20 and the modification was carried out in hexane as solvent. HPTLC with densitometer technique was successfully used for monitoring the production of structured phospholipids (PL) (ML‐type PC, MM‐type PC, and lysophosphatidylcholine; L: long‐chain fatty acid, M: medium‐chain fatty acid). The various parameters such as the effects of reaction temperature, enzyme loading, and the effect of molar proportion of substrate were studied in order to determine the optimum reaction conditions for the acidolysis reaction. The optimal operating conditions for the PLA2‐catalyzed reaction were obtained as 50°C temperature, 50% (wt/wt of substrate) enzyme loading, and a 1:12 molar proportion of PC/caprylic acid. For the lipase‐catalyzed reaction, the optimized temperature was the same as for PLA2, but the enzyme loading and molar proportion were slightly lower, i.e., 40 % w/w of substrate and 1:9 PC/caprylic acid, respectively. The effects of these parameters on the production of structured PL were compared. Under these optimal conditions, the ML‐type PC content was higher in the PLA2‐catalyzed reaction, i.e., 45.29 mol%, and in the lipase‐catalyzed reaction it was 38.74 mol%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.