Abstract

Malate dehydrogenase (MDH) plays important metabolic roles in bacteria. In this study, the recombinant MDH protein (His-MDH) of Brucella abortus was purified and its ability to catalyze the conversion of oxaloacetate (OAA) to L-malate (hereon referred to as MDH activity) was analyzed. Michaelis Constant (Km) and Maximum Reaction Velocity (Vmax) of the reaction were determined to be 6.45 × 10−3 M and 0.87 mM L−1 min−1, respectively. In vitro studies showed that His-MDH exhibited maximal MDH activity in pH 6.0 reaction buffer at 40°C. The enzymatic activity was 100%, 60%, and 40% inhibited by Cu2+, Zn2+, and Pb2+, respectively. In addition, six amino acids in the MDH were mutated to investigate their roles in the enzymatic activity. The results showed that the substitutions of amino acids Arg 89, Asp 149, Arg 152, His 176, or Thr 231 almost abolished the activity of His-MDH. The present study will help to understand MDH's roles in B. abortus metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.