Abstract

By seeding fungus on top of industry residues, a mycelium can grow and form a compact network structure; however, it may not develop due to lack of optimal nutrients from the substrate. Consequently, peach-palm residues can be a potential alternative; so, to test this hypothesis, this work evaluates the effect of peach-palm residues as substrate for the growth of mycelium based on Lentinula edodes. They were also supplemented with cassava bran and various sources of nitrogen-ammonium sulphate, potassium nitrate, and soy flour—to analyse its effects on its physico-chemical, enzymatic activities, and thermal and mechanical properties of the final composite at 12 and 20 days of cultivation. This mycelium was able to grow at optimum source treatment conditions, which depends on the ratio of Carbon to Nitrogen, within only 12 days of inoculation. Furthermore, the enzyme activities directly correlate with the mycelium growth with optimum conditions of pH, water activity, and moisture for L. edodes to grow having lower enzyme activities for a well-developed composite; whereas higher activities were seen for a weakly developed material, and this material demonstrates mechanical and thermal properties similar to common mycelium-based composites. Therefore, this work demonstrates that peach-palm residues can be a potential alternative for mycelium-based composite.

Highlights

  • The peach-palm tree, Bactris gasipaes, is culturally and economically important in Latin America, and it has been used from the inhabitants of the Amazon forest for centuries, benefitting from all of its parts (Mora-Urpí et al 1997)

  • The crushed sheaths were oven-dried at 60 oC for 24 h, followed by supplementation with cassava bran and three sources of nitrogen (Table 1), which were autoclaved at 121 oC (1 atmosphere pressure) for 15 min

  • The physico-chemical and enzymatic activities for the mycelial growth of L. edodes in the peach-palm sheaths presented that the best feed source for mycelium growth and density was justified by the ratio content of carbon/nitrogen for mycelium to grow, while due to the large source of available amino acids from the soy flour

Read more

Summary

Introduction

The peach-palm tree, Bactris gasipaes, is culturally and economically important in Latin America, and it has been used from the inhabitants of the Amazon forest for centuries, benefitting from all of its parts (Mora-Urpí et al 1997). The heart-of palm is mainly sold as picked or canned, with minimal process to preserve its contents that presents significant amounts of minerals (Mora-Urpí et al 1997). To extract this, food source comes with its consequences—about 90% are considered as residue (Zenni et al 2018); for instance, the median and internal sheaths of this tree have a low degradation rate de Lima et al Bioresour. It is generally thrown into the soil as composting, but becomes an environmental liability in the case of peach-palm residues

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.