Abstract

During the past decade, incidence of human infection with rabies virus (RABV) spread by the common vampire bat (Desmodus rotundus) increased considerably in South America, especially in remote areas of the Amazon rainforest, where these bats commonly feed on humans. To better understand the epizootiology of rabies associated with vampire bats, we used complete sequences of the nucleoprotein gene to infer phylogenetic relationships among 157 RABV isolates collected from humans, domestic animals, and wildlife, including bats, in Peru during 2002–2007. This analysis revealed distinct geographic structuring that indicates that RABVs spread gradually and involve different vampire bat subpopulations with different transmission cycles. Three putative new RABV lineages were found in 3 non–vampire bat species that may represent new virus reservoirs. Detection of novel RABV variants and accurate identification of reservoir hosts are critically important for the prevention and control of potential virus transmission, especially to humans.

Highlights

  • During the past decade, incidence of human infection with rabies virus (RABV) spread by the common vampire bat (Desmodus rotundus) increased considerably in South America, especially in remote areas of the Amazon rainforest, where these bats commonly feed on humans

  • The D. rotundus cluster was subsequently subdivided into 4 lineages, I–IV, each with a distinctive geographic distribution within Peru; the RABVs associated with insectivorous bats segregated into 3 independent RABV lineages not previously reported in Peru (Figure 1)

  • The increasing detection of RABV infection in humans in the Peruvian Amazon and the persistence of vampire bat– transmitted RABV infection in livestock highlight the need to clarify the diversity of RABV lineages circulating in Peru and the spatiotemporal dynamics of RABVs associated with vampire bats

Read more

Summary

Introduction

Incidence of human infection with rabies virus (RABV) spread by the common vampire bat (Desmodus rotundus) increased considerably in South America, especially in remote areas of the Amazon rainforest, where these bats commonly feed on humans. To better understand the epizootiology of rabies associated with vampire bats, we used complete sequences of the nucleoprotein gene to infer phylogenetic relationships among 157 RABV isolates collected from humans, domestic animals, and wildlife, including bats, in Peru during 2002–2007 This analysis revealed distinct geographic structuring that indicates that RABVs spread gradually and involve different vampire bat subpopulations with different transmission cycles. In Peru and other countries within the Amazon rainforest region, RABV transmitted by vampire bats has acquired greater epidemiologic importance because of the more frequent detection of human rabies outbreaks. This increase may reflect enhanced laboratory-based surveillance; increased awareness among public health stakeholders; or ecologic changes that promote greater contact between bats and humans, such as depletion of vampire bats’ natural prey community through hunting or habitat fragmentation. Molecular epidemiology has been extensively used to determine RABV reservoir hosts in a given region or country, define the geographic distribution of the disease associated with those hosts, infer the temporal and spatial spread of the disease, identify spillover infections to nonreservoir

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call