Abstract

Epsilon-near-zero materials are exceptional candidates for studying electrodynamics and nonlinear optical processes at the nanoscale. We demonstrate that by alternating a metal and a highly doped conducting-oxide, the epsilon-near-zero regime may be accessed resulting in an anisotropic, composite nanostructure that significantly improves nonlinear interactions. The investigation of the multilayer nanostructure reveals the actual role of the anisotropy, showing that high degrees of anisotropy might be necessary to effectively boost nonlinear processes. Moreover, using a microscopic, hydrodynamic approach we shed light on the roles of two competing contributions that are for the most part overlooked but that can significantly modify linear and nonlinear responses of the structure: nonlocal effects, which blueshift the resulting resonance, and the hot electrons nonlinearity, which redshifts the plasma frequency as the effective mass of free electrons increases as a function of incident power density and enhances the nonlinear signal by several orders of magnitude. Finally, we show that, even in the absence of second order bulk nonlinearity, second order nonlinear processes are also significantly enhanced by the layered structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.