Abstract
We study the classic setting of envy-free pricing, in which a single seller chooses prices for its many items, with the goal of maximizing revenue once the items are allocated. Despite the large body of work addressing such settings, most versions of this problem have resisted good approximation factors for maximizing revenue; this is true even for the classic unit-demand case. In this article, we study envy-free pricing with unit-demand buyers, but unlike previous work we focus on large markets: ones in which the demand of each buyer is infinitesimally small compared to the size of the overall market. We assume that the buyer valuations for the items they desire have a nice (although reasonable) structure, that is, that the aggregate buyer demand has a monotone hazard rate and that the values of every buyer type come from the same support. For such large markets, our main contribution is a 1.88-approximation algorithm for maximizing revenue, showing that good pricing schemes can be computed when the number of buyers is large. We also give a ( e ,2)-bicriteria algorithm that simultaneously approximates both maximum revenue and welfare, thus showing that it is possible to obtain both good revenue and welfare at the same time. We further generalize our results by relaxing some of our assumptions and quantify the necessary tradeoffs between revenue and welfare in our setting. Our results are the first known approximations for large markets and crucially rely on new lower bounds, which we prove for the revenue-maximizing prices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.