Abstract
The effect of variation in composition on the structural, magnetic, optical and photo catalytic activity of magnesium ferrite (MgFe2O4) -graphene oxide (GO) nanocomposites was studied. Magnetic nanocomposites of GO and MgFe2O4 nanoparticles (NPs) with varying w/w ratio were synthesized by facile sonication method. X-Ray diffraction patterns confirmed the presence of spinel ferrite phase in the nanocomposites with the crystalline size 8–32nm. Fourier transformation infrared (FT-IR) spectra of the nanocomposites displayed absorption bands corresponding to GO and MgFe2O4 NPs along with red shift of bands corresponding to C=O, C=C and O-H stretching. Thermo gravimetric analysis confirmed higher stability of nanocomposites over pristine GO. Saturation magnetization increased from 3.63 to 11.10emu/g with the increase in content of MgFe2O4 NPs in the nanocomposites. Scanning electron microscopy analysis along with energy dispersive spectroscopy (SEM-EDX) confirmed the presence of MgFe2O4 NPs along with GO sheets. Immobilization of clusters of MgFe2O4 NPs onto GO sheets was evident from transmission electron micrographs (TEM) of all the nanocomposites. BET surface area of the nanocomposites ranged from 63.04 to 165.29m2/g and was maximum when GO:MgFe2O4 w/w ratio was 1:0.5. It was markedly higher than pristine GO and MgFe2O4 NPs. Optical studies revealed lowering of the band gap in the nanocomposites upto 2.21eV as compared to pristine MgFe2O4 NPs. Photoluminescence (PL) spectra of nanocomposites displayed quenching of PL intensity with increase of GO content. Band gap also displayed similar trend. The synthesized nanocomposites were used as photocatalysts for methylene blue dye degradation under visible light irradiation. The nanocomposite with GO to MgFe2O4 ratio 1:0.5 displayed best activity with complete degradation of dye in 30min. The results confirmed that the composition of GO based magnetic nanocomposites can be tailored for efficient removal of contaminants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.