Abstract

Coupling algae growth on wastewater with hydrothermal liquefaction (HTL) is regarded as an environment-enhancing pathway for wastewater management, biomass amplification, sustainable energy generation and value-added products generation. Through this integrated pathway, microalgae can not only recover nitrogen and phosphorus, but also absorb heavy metals from the wastewater. The migration and transformation of heavy metals need to be specifically assessed and considered due to the environmental concerns associated with metal toxicity. This work reviewed recent advances with respect to bioremediation mechanisms. Particular emphasis was placed on the heavy metal migration, transformation, and the key factors involved in algal wastewater treatment and biomass conversion. Additionally, the challenges of coupling algae wastewater treatment, hydrothermal conversion, and heavy metal control were addressed. Finally, a paradigm involving enhanced algal wastewater treatment and bioenergy production for field application was proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.