Abstract

Abstract The stress corrosion cracking (SCC) behavior of four austenitic Fe-32% Mn-9% Al alloys containing ≈ 1 wt% carbon was studied. All of the four alloys were susceptible to SCC in room temperature and 160°C NaCl solution. SCC was enhanced by applying an anodic potential. The crack path was transgranular, and cleavage-like regions were observed on the fracture surface. The corrosion-assisted microcleavage model proposed for the transgranular SCC behavior of face-centered cubic (fcc) materials very likely was the operating SCC mechanism of the austenitic Fe-Mn-Al alloys. Adding 1.23% Mo or 1.27% Si to the austenitic Fe-32% Mn-9% Al alloys did not change the SCC mechanism and crack paths. Adding 1.27% Si made the alloys more susceptible to SCC, but no such effect was observed with the addition of 1.23% Mo. All four alloys studied were susceptible to hydrogen embrittlement (HE) in 3.5% NaCl solution at large cathodic applied potentials, and the crack paths were intergranular. The addition of Mo, Cr, or S...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.