Abstract

Recently, with the increase in popularity of Internet of Things (IoT) devices, cryptographic protection techniques have become necessary for high-security applications. In general, IoT devices have strict power and area constraints. Thus, use of a physical unclonable function (PUF), which can generate a secret key at low cost, can be advantageous for high-security IoT devices. This paper presents a novel environmental-variation-tolerant (EVT) magnetic tunnel junction (MTJ)-based PUF that has a small area, high randomness, and low bit error rate (BER) compared to previous PUFs. The simulation results obtained using industry-compatible 65-nm model parameters indicate that the proposed PUF exhibits an inter-chip Hamming distance of 0.4901 and entropy of 0.9997, which proves the randomness of the PUF response. In addition, the proposed PUF exhibits the lowest BER across a wide voltage range (0.9 V-1.3 V) and temperature range (-25 °C - 75 °C) compared with previous PUFs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.