Abstract
We studied new perovskite material lead (II) thiocyanate [Pb(SCN)2] in ambient air with humidity above 90%. We prepared perovskite film by use of two-step method combination of spin-coating and dip-coating technique. The Pb(SCN)2 film was first spin-coated either on bare glass or TiO2 coated glass and then followed by dipping it into methylammonium iodide (MAI) solution. The UV-Vis spectrum of Pb(SCN)2 film shows absorption at wavelength shorter than 400 nm. Meanwhile, perovskite MAPb(SCN)xI3-x film absorps light ranging from 300 nm to 760 nm, which shows that the perovskite film can absorp more light to be converted into free charge carrier for generating electricity in solar cells. The XRD patterns shows that perovskite peaks are clearly observed which confirms that perovskite is already well formed. We also observe no significant changes in XRD pattern of perovskite films after stored for five days at ambient air with humidity exceed 90%. This result shows that perovskite MAPb(SCN)XI3-X film is environmentally stable, therefore high stability perovskite solar cells is expected to be produced in ambient air with high humidity. This is in accordance with the SEM images of surface morphology that shows no “pin-hole”.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.