Abstract
Di-n-butyl phthalate (DBP) is considered as a potential modifier of puberty. However, different results indicate that DBP plays an accelerated, delayed, or neutral role in the initiation of puberty. Furthermore, whether the effect of DBP on puberty will disrupt the function of reproductive system in the adults is still ambiguous. Therefore, we aimed to investigate the effect of maternal exposure to DBP on the onset of puberty in male offspring mice and the subsequent changes in the development of reproductive system. Here, pregnant mice were treated with 0 (control), 50, 250, or 500 mg/kg/day DBP in 1 mL/kg corn oil administered daily by oral gavage from gestation day (GD) 12.5 to parturition. Compared with the control group, the 50 mg/kg/day DBP group accelerated puberty onset and testicular development were quite remarkable in male offspring mice during early puberty. Furthermore, in 22-day male offspring mice, 50 mg/kg/day DBP induced increased levels of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone in serum, and promoted the expression of steroidogenesis-related genes in the testes. Testicular Leydig cells (LCs) were isolated from the testes of 3-week-old mice and treated with 0 (control), 0.1, 1 mM monobutyl phthalate (MBP, the active metabolite of DBP) for 24 h. Consistent with the in vivo results, the expression of steroidogenesis-related genes and testosterone production were increased in LCs following exposure to 0.1 mM MBP. In adulthood, testes of the male offspring mice exposed to all doses of DBP exhibited adverse morphology compared with the control group. These results demonstrated that maternal exposure to 50 mg/kg/day DBP induced earlier puberty and precocious development of the testis, and eventually damaged the reproductive system in the later life.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.